

METALLURGICAL LABORATORY

ВЕТА LAB NO.M10198- CS4-02	TESORO REFINING AND MARKETING COMPANY	CUSTOMER P.O. No.: 4501667904		
PART: 6600-E HEAT EXCHANGER CS4	ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221	DATE: AUGUST 5, 2010		
PART 19 & 20		Page 1 of 57		

LABORATORY REPORT-CS4

CONTACT:	JIM MCVAY
ISSUED BY:	JEFF BLOUGH
TELEPHONE EXTENSION:	440-604-9843
Mail stop:	A- BETA
REVIEWED BY :	Dave Klesch

REPORT ISSUED TO:

Jim McVav	Robert J. Hall	Robert Parker						

SAMPLE DESCRIPTION: A heat exchanger failed and a test protocol was developed for the failure analysis of the component. This test protocol and its addendum, as of this date and contained in Attachment 1, were developed and signed by Tesoro Companies, Division of Occupational Safety and Health and U.S. Chemical Safety Board. FirstEnergy BETA Laboratory was selected as the referee test laboratory to perform the testing requirements of test protocol. The test protocol was not specific as to the test samples to be removed from the heat exchanger or the test locations/test parameters for each specific test within the test sample. Therefore it was agreed

"The laboratory, acting as a referee laboratory, will be supplied the locations to take the test samples and the type of test and test parameters to be performed at each location on the test sample, i.e. magnification, hardness load/test method. The signatory parties or their technical representatives that are present in the laboratory at the time shall make those decisions and give that information directly to the laboratory. Comments from other technical experts will be considered and factored into the signatory parties or their technical representative's decisions but all decisions on protocol or samples shall remain as decisions of the signatory parties or their representatives."

Additionally it was determined that BETA laboratory as a referee test laboratory is to report the data obtained but not give any interpretation or conclusion on any data, or on details in the photo.

On June 5, 2010 the heat exchanger arrived at Halvorsen Company's warehouse, in a June 11, 2010 meeting locations were selected for sample removal and on June 12, 2010 samples were cut by Halvorsen for submittal to BETA laboratory. The results of the receipt inspection for the heat exchanger at Halvorsen Companies warehouse are contained in FirstEnergy's Report titled M10198- Receipt Inspection dated July 29, 2010. Additionally the report on LS3 Bottom Findings was issued July 30, 2010.

This report is the first of a series on failed parts of 6600E heat exchanger. The LS# and CS# refer to longitudinal and circumferential weld seams while the part number refers to the chain of custody

This interpretive report is a result of testing/analysis derived from material, information and/or specifications furnished by the customer and is confidential and is intended for the customer only. If you are receiving it in error, please advise immediately. Further, you are prohibited from disclosing, copying, distributing or using any of this information without written approval from Beta Lab. This report shall not be reproduced except in its entirety and, in any case, without prior written approval from Beta Lab. Except for such obligations as are set forth in the Agreement between Beta Lab and its customer for whom this work has been performed, neither the party preparing this report nor any person acting on its behalf: Makes any warranty or representation, express or implied, including merchantability or fitness for a particular purpose, with respect to the accuracy, completeness or usefulness of the information contained in this report, or that the use of any information, apparatus method or process disclosed from this report does not infringe upon privately owned rights or intellectual property; or Assumes any liability with respect to the use of, or for damages, including consequential or punitive damages, resulting from the use of, any information, apparatus, method or process disclosed in this report.

METALLURGICAL LABORATORY

Вета Lab No.M10198- CS4-02	TESORO REFINING AND MARKETING COMPANY	CUSTOMER P.O. NO.: 4501667904		
PART: 6600-E HEAT EXCHANGER CS4 PART 19 & 20	Anacortes Refinery 10200 W. March Point Road T91WA4428 Anacortes, WA 98221	DATE: AUGUST 5, 2010		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Page 2 of 57		

LABORATORY REPORT-CS4

<u>TEST PERFORMED:</u> The tests on the exchanger parts included visual examination, chemical analysis via Vacuum Spectrosmetry and LECO carbon, macro and micro-hardness measurements, wall thickness measurements, liquid penetrant inspection (by others), and photomicroscopy. The details of the apparatus utilized and the test procedures are given in Table 1 and Attachment 2.

TEST RESULTS: The heat exchanger weld seams had been previous labeled as shown in Figure 1 and the same labeling was used for this report. The pieces labeled part 19 (CS4-02 East) and part 20 (CS4-02 West) containing about a 6 inch wide of the band of the fracture along CS4, as shown in Figure 2, was received at BETA Lab for testing. These were given two part numbers because Halvorsen was requested to cut the 360 degree band into two 180 degree arcs. The approximately 109 inches of the CS4 fracture edge are shown in Figures 3-8.

The ID surface of part 19 and 20 were liquid penetrant inspected (by others, see attachment 3) and no reportable indications were found.

Four locations were selected, by others, for metallurgical mounting. The locations on pieces and the photos of the etched mounts are shown in Figures 9 and 10. The mounts were examined in the un-etched and etched conditions and photomicrographs were taken as selected by others. The photomicrographs are shown in Figures 11-32.

Samples of the can 4 (clad and backing plate) and the ID and OD crowns of CS4 and LS4 were obtained and chemically analyzed. The results of those chemical analyses are detailed in Table 2

One location was selected for SEM fractography but fracture surface was very heavily coated with scale/corrosion product. The fracture surface of sample 19East-SEM1 was cleaned with the following procedure and the as cleaned surface is shown in Figures 33.

- 1. Alconox, ultrasonic, up to 5 minutes, rinse with warm water
- 2. Inhibited HCI, ultrasonic, 30 60 seconds, rinse with warm water
- 3. Alconox, ultrasonic, approximately 30 seconds, rinse with warm water
- 4. Inhibited HCl, ultrasonic, approximately 15 30 seconds, rinse with warm water
- 5. Alconox, ultrasonic, approximately 30 seconds, rinse with warm water
- 6. Methanol, ultrasonic, approximately 10 seconds

The Alconox solution was made up from approximately 35g/l and the inhibited HCl was made up of 6N HCl inhibited with 5g/l of 1,3 Di-n-butyl-2 thiourea

The surface was still heavily scaled so the following cathodic cleaning step was performed:

19East- Total accumulated time was 1 hour on 6/29/2010

- 1. 200g/I Na₂CO₃@~3-4 V., 800mamps
- 2. Alconox (~ 4 % W/V) Ultrasonically for ~ 5 minutes

METALLURGICAL LABORATORY

ВЕТА LAB NO.M10198- CS4-02	TESORO REFINING AND MARKETING COMPANY	CUSTOMER P.O. No.: 4501667904		
PART: 6600-E HEAT EXCHANGER CS4	ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES. WA 98221	DATE: AUGUST 5, 2010		
PART 19 & 20	, , , , , , , , , , , , , , , , , , , ,	Page 3 of 57		

LABORATORY REPORT-CS4

- 3. $5\% H_2SO_4$ to desmut for $\sim 10 15$ seconds
- 4. repeat Alconox
- 5. Flush and rinse with acetone

The results of the chemical cleaning, cathodic cleaning for this sample and the previous cleaning of the SEM samples in the LS3 report were discussed with the signature parties and all SEM work of the oxidized fracture surfaces was placed on HOLD.

Rockwell hardness testing was performed at approximately the mid wall on transverse section for can 4 and the results are reported in Table 3.

Wall thickness measurements were performed about 2 inch away from the fracture surface and the details are contained in Table 4.

Additionally micro-hardness measurements in the 500gm Vickers (HV_{500}) scale were performed, as directed, on some of the mounts. The locations where the traverses were performed are shown in Figure 31 and the data is presented in Tables 5 and 6 with a summary of the range of micro-hardness for each zone in Table 7

METALLURGICAL LABORATORY

Вета Lab No.M10198- CS4-02	TESORO REFINING AND MARKETING COMPANY ANACORTES REFINERY	CUSTOMER P.O. No.: 4501667904		
PART: 6600-E HEAT EXCHANGER CS4	ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221	DATE: AUGUST 5, 2010		
PART 19 & 20	, , , , , , , , , , , , , , , , , , , ,	Page 4 of 57		

LABORATORY REPORT-CS4

TABLE 1 TESTS PERFORMED

(See Attachment 2 for Test/Equipment Specifications)

TEST	METHOD OR INSTRUMENT	PERFORMED BY	Location, Date	RESULTS LOCATION
VISUAL EXAMINATION	LECO SZH STEREO MACROSCOPE OR PORTRAIT CAMERA	J. BLOUGH	HALVORSEN & BETA, VARIOUS	TEST RESULTS
CHEMICAL ANALYSIS	THERMO ARL-3460 OE SPECTROMETER	M. TASCAR	BETA, 6/25/2010	TABLE 2
Carbon Analysis	Leco Carbon/Sulfur Determination CS-444	M. Belviso	BETA, 7/26/2010	Table 2
ROCKWELL HARDNESS	Wilson Rockwell 524THardness Tester	M, Tascar	BETA, 7/26/10	Table 3
KNOOP/VICKERS, SEMI-MACRO VICKERS	INSTRON TUKON 2100B HARDNESS TESTER, MODEL T2100BR1942	M. Tascar	BETA, 7/31/2010	TABLES 5 & 6
OPTICAL METALLOGRAPHY	LECO PMG-3 OPTICAL MICROSCOPE	J. BLOUGH	BETA, VARIOUS	Figures 11-31
FRACTOGRAPHY	CAMSCAN SCANNING ELECTRON MICROSCOPE WITH IXRF EDS2000 ENERGY DISPERSIVE X-RAY SPECTROMETER	C. HOLP	BETA, 6/30/2010	TEST RESULTS, FIGURE 32
LIQUID PENETRANT TESTING	FLUORESCENT DYE	TEAM INDUSTRIAL SERVICE ,MICHAEL BUCKLEY	BETA, 6-15- 2010	ATTACHMENT 3
WALL THICKNESS	MICROMETER, STARRETT S/N 120A	M. Tascar	BETA, 7/28/2010	Table 4

METALLURGICAL LABORATORY

 BETA LAB NO.M10198- CS4-02
 TESORO REFINING AND MARKETING COMPANY ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221
 CUSTOMER P.O. NO.: 4501667904

 PART: 6600-E HEAT EXCHANGER CS4 PART 19 & 20
 DATE: AUGUST 5, 2010

LABORATORY REPORT-CS4

TABLE 2 CHEMICAL ANALYSIS FOR BAST METAL AND WELD DEPOSITS

SAMPLE IDENTIFICATION		CHEMICAL COMPOSITION, WT. %										
	С	Sı	Р	S	Mn	Nı	CR	Мо	V	Cu	Co	AL
19E CAN 4	0.285	0.25	0.008	0.031	0.65	0.11	0.10	0.03	<0.001	0.13	0.01	0.005
19E CAN 4 CLAD	0.067	0.61	0.016	0.012	1.67	13.02	17.37	2.3	0.06	0.14	0.32	0.002
SA- 515 GRADE 70	0.31	0.13- 0.45	0.035 MAX	0.035 MAX	1.30 MAX	NS	NS	NS	NS	NS	NS	NS
SA 240 TYPE 316 S31600 ▲	0.08 MAX	0.75 MAX	0.045 MAX	0.030 MAX	2.00 MAX	10.00- 14.00	16.00- 18.00	2.00- 3.00	NS	NS	NS	NS
▲N 0.10 MAX MEASURED 0.04												
19W CS4 OD CROWN	0.08	0.53	0.011	0.020	1.07	0.06	0.07	0.02	0.001	0.13	0.001	0.005
19W CS4 ID SURFACE	0.05	0.69	0.14	0.16	1.18	12.37	19.42	2.80	0.03	0.05	0.05	ND
19W LS4 OD	0.07	0.53	0.011	0.021	1.13	0.06	0.07	0.01	0.001	0.13	0.01	0.006
19W LS4 ID	0.03	0.78	0.014	0.019	0.89	13.27	19.05	2.92	0.05	0.07	0.08	ND
SFA 5.1 (E7016, E7018)*	NS	0.75 MAX	NS	NS	1.60 MAX	0.30 MAX	0.20 MAX	0.30 MAX	0.08 MAX	NS	NS	NS
SFA 5.17 (EM11K)	0.07- 0.15	0.65- 0.85	0.030	0.025	1.00- 1.50	NS	NS	NS	NS	0.35	NS	NS
SFA 5.17 (EL12)	0.04- 0.14	0.10 MAX	0.030 MAX	0.030 MAX	0.25- 0.60	NS	NS	NS	NS	0.35	NS	NS
SFA 5.17 (EM12K)	0.05- 0.15	0.10- 0.35	0.030 MAX	0.030 MAX	0.80- 1.25	NS	NS	NS	NS	0.35	NS	NS

NOTES: NS = NOT SPECIFIED, ND = NOT DETECTED

NO ALLOYS OR WELD WIRE GRADES WERE SPECIFIED SO TYPICAL ARE PRESENTED

 $SA-515\ Specification\ for\ Pressure\ Vessel\ Plates,\ Carbon\ Steel,\ For\ Intermediate-And\ Higher-Temperature\ Service-July\ 2003\ Addendum$

SA-240 SPECIFICATION FOR HEAT-RESISTING CHROMIUM AND CHROMIUM-NICKEL STAINLESS STEEL PLATE, SHEET, AND STRIP FOR PRESSURE VESSELS

SFA 5.1 SPECIFICATION FOR CARBON STEEL ELECTRODES FOR SHIELD METAL ARC WELDING-JULY 2003 ADDENDUM

SFA 5.17 SPECIFICATION FOR CARBON STEEL ELECTRODES AND FLUXES FOR SUBMERGED ARC WELDING- JULY 2003 ADDENDUM

TABLE 3 ROCKWELL (HRB) HARDNESS MEASUREMENTS ON PLATE CROSS SECTION

SAMPLE		Н	ARDNESS	
IDENTIFICATION	Мінімим	Махімим	AVERAGE	NUMBER OF INDENTATIONS
19E Can 4	79.3	80.2	79.8	7

^{*} TOTAL OF MN+NI+CR+MO+V 1.75 MAX

METALLURGICAL LABORATORY

 BETA LAB NO.M10198- CS4-02
 TESORO REFINING AND MARKETING COMPANY ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221
 DATE: AUGUST 5, 2010

 PART 19 & 20
 PAGE 6 OF 57

LABORATORY REPORT-CS4

TABLE 4 WALL THICKNESS MICOMETER (BETA 2005) MEASUREMENTS CS4 FRACTURE

Location	2 inch								
Number	from								
from UT	fracture								
reading	(inch)								
0	0.911	24	0.900	48	0.875	72	0.901	96	0.896
2	0.899	26	0.886	50	0.879	74	0.887	98	0.896
4	0.898	28	0.884	52	0.882	76	0.886	100	0.884
6	0.903	30	0.883	54	0.884	78	0.880	102	0.885
8	0.904	32	0.881	56	0.891	80	0.878	104	0.890
10	0.912	34	0.871	58	0.893	82	0.878	106	0.887
12	0.908	36	0.875	60	0.898	84	0.884	108	0.915
14	0.907	38	0.844*	62	0.898**	86	0.896		
16	0.910	40	0.877	64	0.901**	88	0.898		
18	0.899	42	0.882	66	0.905	90	0.898		
20	0.900	44	0.878	68	0.903	92	0.899		
22	0.895	46	0.869**	70	0.906	94	0.900		

Notes:

UT = Ultrasonic testing in the field by others

^{*} in a groove

^{**} next to weld

METALLURGICAL LABORATORY

 BETA LAB NO.M10198- CS4-02
 TESORO REFINING AND MARKETING COMPANY ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221
 CUSTOMER P.O. NO.: 4501667904

 PART: 6600-E HEAT EXCHANGER CS4 PART 19 & 20
 DATE: AUGUST 5, 2010

LABORATORY REPORT-CS4 TABLE 5 MICRO-HARDNESS MEASUREMENTS MOUNT M2 CS4 VICKERS 500Gm (HV₅₀₀) UNLESS SPECIFIED

M2 OD Line HV	Location	M2 Cusp Line HV	Locations		M1 ID Line HV	L	ocations		M1 Can 3 HAZ HV	Locations
		174	BM Can3		141	ВМ	Can3		145	Lower Diag BM (Can3)
		226	BM Can3		156	ВМ	Can3	1	159	Lower Diag BM (Can3)
		223	BM Can3		146	ВМ	Can3	1	170	Lower Diag BM (Can3)
		224	BM Can3		153	ВМ	Can3	1	181	Lower Diag BM (Can3)
		175	HAZ CG		188	НА	Z CG Can3			
		202	HAZ CG		181	НА	Z CG Can3	1		
		217	HAZ CG	1	186		Z CG Can3	1		
		216	HAZ CG		179	НА	Z CG Can3		178	Upper Diag HAZ (Can3)
		202	HAZ FG		199		Z FG Can3		218	Upper Diag HAZ (Can3)
		202	HAZ FG		195	НА	Z FG Can3	1	192	Upper Diag HAZ (Can3)
		204	HAZ FG		193	НА	Z FG Can3	1	196	Upper Diag HAZ (Can3)
		199	HAZ FG		198	НА	Z FG Can3	1	205	Upper Diag HAZ (Can3)
178	Weld Metal	173	Weld Metal		242		ld Metal			
180	Weld Metal	168	Weld Metal		236	We	ld Metal	1		
168	Weld Metal	162	Weld Metal		234	We	ld Metal			
161	Weld Metal	156	Weld Metal		235	We	ld Metal			
171	Weld Metal				239	We	ld Metal			
173	Weld Metal				234	We	ld Metal			
221	HAZ CG	178	HAZ CG							
203	HAZ CG	182	HAZ CG		J.					
198	HAZ CG	182	HAZ CG							
214	HAZ CG	170	HAZ CG		#					
186	HAZ FG	169	HAZ FG			165	HAZ FG			
177	HAZ FG	166	HAZ FG			165	HAZ FG			
187	HAZ FG	172	HAZ FG			149	HAZ FG			
174	HAZ FG	172	HAZ FG			138	HAZ CG			
		159	HAZ CG			144	HAZ CG			
		167	HAZ CG		ji k					
		159	HAZ CG							
1	2	162	HAZ CG		(9.	<u> </u>			
151	BM Can4	165	BM Can4			165	BM Can4			
151	BM Can4	159	BM Can4			172	BM Can4			
165	BM Can4	146	BM Can4							
157	BM CAN4	167	BM Can4							
Notes	: BM = Base Me	tal, HAZ=	Heat Affected	Zo	ne, Co	G = c	coarse grain,	F	G = fine	grain

METALLURGICAL LABORATORY

Вета Lab No.M10198- CS4-02	TESORO REFINING AND MARKETING COMPANY	CUSTOMER P.O. No.: 4501667904		
PART: 6600-E HEAT EXCHANGER CS4	ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221	DATE: AUGUST 5, 2010		
PART 19 & 20		Page 8 of 57		

LABORATORY REPORT-CS4 TABLE 6 MICRO-HARDNESS MEASUREMENTS MOUNT M3 LS4 VICKERS 500Gm (HV $_{500}$)

M3 OD Line HV	Location	M3 Cusp Line HV	Locations	M3 ID Line HV	Locations
167	BM	179	BM	163	BM
160	ВМ	169	BM	164	BM
170	BM				
164	BM				
		175	CG HAZ	167	CG HAZ
		164	CG HAZ	146	CG HAZ
		180	CG HAZ	165	CG HAZ
		175	CG HAZ	169	CG HAZ
193	FG HAZ	189	FG HAZ	181	FG HAZ
188	FG HAZ	185	FG HAZ	170	FG HAZ
198	FG HAZ	183	FG HAZ	159	FG HAZ
207	FG HAZ	196	FG HAZ	164	FG HAZ
215	CG HAZ	192	CG HAZ		
223	CG HAZ	201	CG HAZ		
205	CG HAZ	196	CG HAZ		
214	CG HAZ	192	CG HAZ		
167	Weld Metal	172	Weld Metal	213	Weld Metal
153	Weld Metal	167	Weld Metal	206	Weld Metal
168	Weld Metal	173	Weld Metal	224	Weld Metal
163	Weld Metal	172	Weld Metal	228	Weld Metal
167	Weld Metal			369	Weld Metal)
				237	Weld Metal
197	CG HAZ	199	CG HAZ	178	FG HAZ
205	CG HAZ	184	CG HAZ	177	FG HAZ
213	CG HAZ	194	CG HAZ	183	FG HAZ
204	CG HAZ	201	CG HAZ	179	FG HAZ
198	FG HAZ	185	FG HAZ	186	CG HAZ
190	FG HAZ	186	FG HAZ	191	CG HAZ
188	FG HAZ	180	FG HAZ	174	CG HAZ
191	FG HAZ	173	FG HAZ	200	CG HAZ
		167	CG HAZ		
		165	CG HAZ		

METALLURGICAL LABORATORY

BETA LAB NO.M10198- CS4-02	TESORO REFINING AND MARKETING COMPANY	Customer P.O. No.: 4501667904	
Part: 6600-E Heat Exchanger CS4	ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221	DATE: AUGUST 5, 2010	
PART 19 & 20		Page 9 of 57	

LABORATORY REPORT-CS4

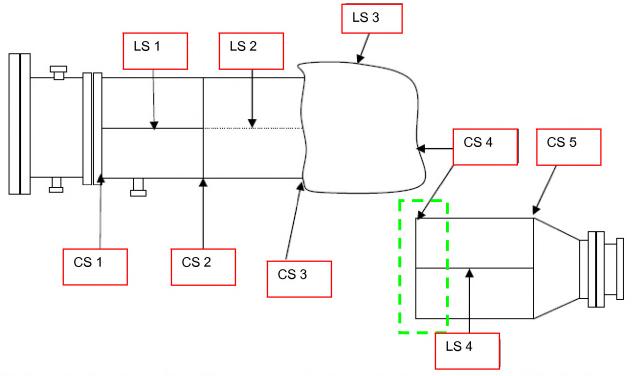
TABLE 6 CONTINUED

M3 OD Line HV	Location	M3 Cusp Line HV	Locations		M3 ID Line HV	Locations
		164	CG HAZ		三侧	
		163	CG HAZ			
168	BM	163	BM		155	BM
162	BM	165	BM		157	BM
167	BM					
155	BM					
Notes:	BM = Base Metal,	HAZ = Hea	at Affected Zone,	C	G = coarse grain,	FG = fine grain

TABLE 7

SUMMARY OF MICRO-HARDNESS MEASUREMENTS FROM TABLE 5 and 6 VICKERS 500Gm (HV $_{500}$)

	M 2 CS4	M3 LS4
Base Metal	141-226	NA
3		
Base Metal	146-172	160-170
4		
HAZ 3	145-218	NA
HAZ 4	138-221	164-223
Weld Metal	161-242	153-173
		·


Notes:

HAZ = heat Affected Zone

NA = not applicable

ВЕТА LAB NO.M10198- CS4-02	TESORO REFINING AND MARKETING COMPANY	CUSTOMER P.O. No.: 4501667904	
PART: 6600-E HEAT EXCHANGER CS4	ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221	DATE: AUGUST 5, 2010	
PART 19 & 20		Page 10 of 57	

LABORATORY REPORT-CS4

Sketch of main heat exchanger Cans 1-3 and separated back head Can 4- green dotted line is item for this report

Back Head with fracture on left at CS4

FIGURE 1 Un-packed back head of the 6600E heat exchanger

METALLURGICAL LABORATORY

BETA LAB NO.M10198- CS4-02

PART: 6600-E HEAT EXCHANGER CS4 PART 19 & 20

TESORO REFINING AND MARKETING COMPANY **ANACORTES REFINERY** 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221

CUSTOMER P.O. No.: 4501667904

DATE: AUGUST 5, 2010

PAGE 11 OF 57

LABORATORY REPORT-CS4

Fracture along CS4 seam between the green arrows mates up with fracture on back head shown below

Bottom half of about 6 inch wide ring is cut-red line is

zero degrees

Fracture edge of CS4 from one angle

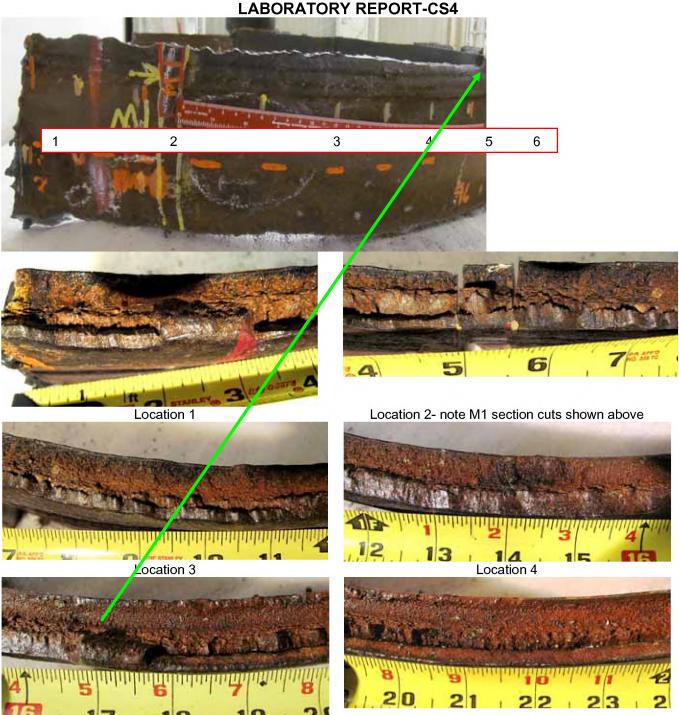
Fracture edge of CS4 from another angle

CS04cut samples with fracture edge protected

Fracture edge of CS4 from nozzle angle note T4 UT

FIGURE 2 Back Head fracture along CS4 in prior to cutting condition and after cutting about 6 inch wide ring containing the full fracture - note 0 degrees is for nozzle location which is at 12:00 for the shell. All numbers around the circumference in the photos are applied by others during the field inspections

BETA LAB NO.M10198- CS4-02


PART: 6600-E HEAT EXCHANGER CS4 PART 19 & 20

TESORO REFINING AND MARKETING COMPANY ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221

CUSTOMER P.O. No.: 4501667904

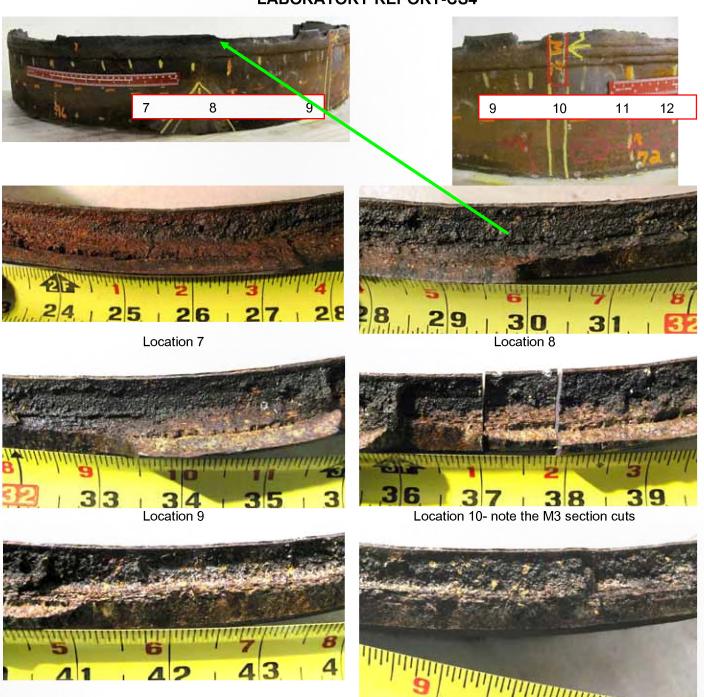
DATE: AUGUST 5, 2010

PAGE 12 OF 57

Location 5 Location 6 FIGURE 3 Photos of the fracture along CS4 with the locations as shown in the upper left (ID on top)

METALLURGICAL LABORATORY

BETA LAB NO.M10198- CS4-02


PART: 6600-E HEAT EXCHANGER CS4 PART 19 & 20

TESORO REFINING AND MARKETING COMPANY ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221 CUSTOMER P.O. No.: 4501667904

DATE: AUGUST 5, 2010

PAGE 13 OF 57

LABORATORY REPORT-CS4

Location 11 Location 12

FIGURE 4 Photos of the fracture along CS4 with the locations as shown in the upper left (ID on top)

METALLURGICAL LABORATORY

BETA LAB NO.M10198- CS4-02

PART: 6600-E HEAT EXCHANGER CS4 PART 19 & 20

TESORO REFINING AND MARKETING COMPANY ANACORTES REFINERY 10200 W. MARCH POINT ROAD T91WA4428 ANACORTES, WA 98221

CUSTOMER P.O. No.: 4501667904

DATE: AUGUST 5, 2010

PAGE 14 OF 57

LABORATORY REPORT-CS4

Location 16

FIGURE 5 Photos of the fracture along CS4 with the locations as shown in the upper left (ID on top)