API 653
Inspection Report

Internal Inspection and
Out-of-Service
or
Internal Inspection
w/ External Checklist

Report Prepared For
U.S. CHEMICAL SAFETY AND HAZARD INVESTIGATION BOARD
FREEDOM INDUSTRIES

CHARLESTON, WV

4-METHYLCYCLOHEXANEMETHANOL (MCHM)

Tank Number
396

Inspected on
APRIL 29 – MAY 1, 2014

Report Prepared By

POWERS
ENGINEERING & INSPECTION, INC.

PO Box 1928
Benicia, CA 94510

Tel 707 334 3400
Fax 707 922 2284

WWW.POWERSEI.COM

Gary Powers, P.E.
Authorized Inspector 0691
California Civil Engineer 60589

Inspection History

<table>
<thead>
<tr>
<th>Constructed</th>
<th>Re-Erect</th>
<th>Second Bottom</th>
<th>External Inspection</th>
<th>Internal Inspection</th>
<th>Shell UT Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940?</td>
<td>N/A</td>
<td>N/A</td>
<td>5/1/2014</td>
<td>5/1/2014</td>
<td>5/1/2014</td>
</tr>
</tbody>
</table>

Next Inspection: N/A N/A N/A

Revisions

Rev. 0 6/12/2014 Initial Report
EXECUTIVE SUMMARY

Powers Engineering and Inspection, Inc. was contracted by the U.S. Chemical Safety and Hazard Investigation Board Inc. to provide API 653 Internal Inspection services for Tank 396 at the Freedom Industries Facility in Charleston, WV.

Tank 396 was most likely constructed during the 1940s. The tank is 20-ft diameter x 20-ft tall and has a lap-riveted shell, cone roof, and a 1/4-in lap-welded bottom. It is the inspector’s opinion that the existing lap-welded bottom is at least 25 years old and was installed to replace the original lap-riveted bottom and riveted shell to chime angle.

The tank was recently in 4-methylcyclohexanemethanol (MCHM) service.

In January 2014 a leak was detected and the tank and its sister tanks 395 and 397 were removed from service.

After this inspection the tanks will be dismantled.

The report and executive summary are based on field inspection and evaluation in accordance with the API 653 Standard. Since these tanks are to be dismantled, no repair recommendations were provided to return the tank back to service.

If for some reason the tank is returned to service all the requirements of API 650 and 653 should be met.

INSPECTION SUMMARY

1. Inspect the tank and identify any current leak paths resulting from corrosion, internal or external.

1.1. During the last week of April 29th thru May 1, 2014 a large door sheet was cut in the 1st shell course and the bottom cleaned. In order to identify corrosion pitting, weld defects or other product side indications the surface of the bottom should be clean and dry. Unfortunately, during the week of the inspection, heavy rains caused the area surrounding the tank to flood resulting in wet muddy conditions in and around the tank. Leaks in the roof and tracking of mud and dirt into the tank resulted in poor visual inspection conditions. Despite these poor conditions, the hole in the bottom on plate 9 was easy to find, due to the infiltration of water from outside the tank thru the hole.
1.2. **Product Side Visual Bottom Inspection:** At the time of the inspection a series of deep isolated product side pits were identified on bottom plate 9. A hole through the bottom from product side corrosion was present in the pit nearest the shell resulting in an active leak path. The edge of the \(\frac{3}{4} \)-in diameter hole is 2 ¾-in from the shell and located in the API 653 designated critical zone (3-in from shell of the inside edge of the shell, measured radially inward).

1.3. **Product side Corrosion Rate:** (loss/age of bottom = 0.25-in/25 years = 0.01 in/year)

1.4. A “Amoeboid’ shaped deep product side area of pitting (possible indication of MIC – microbiologically induced corrosion) was also found on bottom plate 9. This isolated area of pitting was approximately 2-in in diameter and resulted in a loss of 0.07-in as determined via pit gauging. Remaining thickness (0.25-0.07=0.18-in +/-)

1.5. **Soil Side Bottom Inspection:** The 0.250-in thick bottom was inspected for soil-side corrosion utilizing the MFE 2412 Mark II scanner. Extensive magnetic flux differential indications were recorded on every bottom plate. Some of these indications most likely result from soil side corrosion damage. Unfortunately, (in order to preserve the condition of the bottom as close to the conditions at the time of the product leakage) at the time the inspection the bottom was muddy and dirty. (see photo below)

Note: It is the inspector’s experience that it is unlikely that all the indications are from soil side corrosion damage. In addition to soil side corrosion the MFE 2412 scanner can indicate on ‘old weld-ments’, mechanical dents, bottom plate warp age, debris or dirty plates, and rough areas of corrosion scale or pitting loss. In order to properly classify and quantify these indications precisely, the bottom would need to have been sand blasted and immaculately clean.
1.6. During the MFE 2412 bottom scan each significant MFE indication was marked on the bottom with “Mark-al® Paint stick”.

MFE Bottom Indication Marks (Immediately after marking)

1.7. The marks were quickly obscured by dirt and mud.

MFE Bottom Indication Marks (shortly after marking)

1.8. Limited prove-up of the MFE indications resulted in remaining UT thickness of 0.18-in or a loss of 0.25-0.18=0.07-in). Note it is the inspector’s opinion that the limited UT prove up did not identify the worst are of soil side corrosion. In order to conduct this type inspection at a minimum a full inspection blast of the bottom to remove all scale/dirt and debris would need to be conducted.

1.9. Soil side corrosion rate. 0.07-in loss/25 years age of bottom = 0.0028-in/year.
1.10. In the Bottom Corrosion Map the MFE indications are marked with red X’s.
2. Identify any risk of future leak paths resulting from corrosion, internal or external.

2.1. There is a possibility that significant undetected bottom corrosion is present under non API 650 tank shell to bottom joint. This joint is formed with a 3 x 3 x ¼-in angle as illustrated. Note: Inspection of the bottom plate under the shell and extending outward is almost impossible short of excavating around the base of the tank and utilizing mirrors to view the bottom condition in this area.

2.2. There may be existing cracks or weld defects in the existing bottom butt welds. The lap welded bottom is ¼-in nominal thick plate with an under the shell bottom breakdown detail (as illustrated) that transitions from a lap weld to a butt weld. This joint is susceptible to cracking and is located in the API 653 area of the bottom called the “Critical Zone” or CZ. Most of the CZ joint is obscured from inspection by the shell to bottom angle detail.
2.3. There may be significant soil side corrosion in the areas of the bottom difficult for access with the MFE 2412 scanner. The MFE coverage was limited to approximately 75% of the bottom area and indicated in the next drawing. Under normal conditions the scanner coverage near the bottom to shell joint is plus or minus 1 to 2-in, at the square plate intersections plus or minus 4-in, around nozzles and swing lines plus or minus 3 to 12-in, and near the triangular corners of sketch plates plus or minus 6 to 12-in. In addition on this tank the shell to bottom detail eliminates from MFE coverage, the outer 4 inches of the bottom that extends under the shell.

2.4. These areas that were difficult to reach with the scanner (<2-in from the corner weld, tight angled bottom plates, under columns and base plates, around supports, and under low shell nozzles). If conditions were optimal Ultrasonic thickness testing or UT would be performed in these areas, however because of the rough and dirty bottom conditions, effective UT of these areas was not possible.
2.5. In addition to visual inspection the bottom lap welds are typically tested with a Vacuum Box, during an API 653 bottom inspection. Unfortunately the conditions did not allow for affective inspection by either method.
3. Identify any physical abnormalities to the shell, roof, access structure or appurtenances.

3.1. Shell Settlement. The maximum out-of-plane base of shell settlement was approximately 0.5-in, which is within acceptable limits of API 653 Appendix B calculations for differential settlement. See survey results.

3.2. Shell Verticality. The shell has some existing cosmetic dents and minor deformation. (see shell roll out drawing and photos)

3.3. Access Structure. The roof access is via a common catwalk servicing all 3 tanks. The vertical handrail support and connection to the catwalk is poorly designed allowing deflection of the handrail.

3.4. Roof Support Rafters. Several of the roof deck support rafters are damaged.

3.5. Roof Support Column. The roof support column is a pipe design and is susceptible to undetected internal corrosion damage.

3.6. Column Base. The base of the column does not appear to be restrained from lateral movement. A doubler plate or repad is not present underneath the column. There is a risk that an undetected leak path is present underneath the column.
3.7. **Roof Venting.** The roof venting appears to be via a 3-in PVV vent flame arrestor. The condition of this vent was not determined at the time of the inspection.

3.8. **Coating Condition.** The shell and roof coatings were intact but aged. Some isolated areas of failure were noted.
Table of Contents

Executive Summary ... 2
Inspection Summary .. 2
Basic Tank Information .. 12
Shell Settlement Survey ... 13
Shell Thickness Calculation ... 14
Shell Rollout View .. 15
Cone Roof Layout .. 16

Appendix A API 653 Checklist
Appendix B Photo’s
 Inspection Significant Photos
 Inspection General Photos
Basic Tank Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Number:</td>
<td>396</td>
</tr>
<tr>
<td>Owner:</td>
<td>FREEDOM INDUSTRIES</td>
</tr>
<tr>
<td>Location:</td>
<td>CHARLESTON, WV</td>
</tr>
<tr>
<td>Unit/Zone/Area:</td>
<td>TANK FARM</td>
</tr>
<tr>
<td>Product:</td>
<td>4-METHYL CYCLOHEXANE METHANOL (MCHM)</td>
</tr>
<tr>
<td>Diameter (ft):</td>
<td>20</td>
</tr>
<tr>
<td>Height (ft):</td>
<td>20</td>
</tr>
<tr>
<td>Capacity (bbls):</td>
<td>1,119 bbls.</td>
</tr>
<tr>
<td>Type Tank:</td>
<td>RIVETED WITH FIXED CONE ROOF</td>
</tr>
<tr>
<td>Year Built:</td>
<td>1940s?</td>
</tr>
<tr>
<td>Design Standard:</td>
<td>API 12C</td>
</tr>
<tr>
<td>Manufacturer:</td>
<td>UNKNOWN</td>
</tr>
<tr>
<td>Type Shell:</td>
<td>SINGLE LAP RIVETED</td>
</tr>
<tr>
<td>Type Roof:</td>
<td>CONE ROOF LAP RIVETED</td>
</tr>
<tr>
<td>Type Foundation:</td>
<td>SOIL FOUNDATION WITH CONCRETE SKIRT AROUND SOME OF THE TANK AND MOST OF THE CONTAINEMENT AREA</td>
</tr>
<tr>
<td>Type Bottom:</td>
<td>1/4-IN LAP-WELDED</td>
</tr>
<tr>
<td>Roof Access:</td>
<td>CATWALK</td>
</tr>
<tr>
<td>Floating Roof Access:</td>
<td>N/A</td>
</tr>
<tr>
<td>Floating Roof Type:</td>
<td>NONE</td>
</tr>
<tr>
<td>Roof Man ways:</td>
<td>20-IN MANWAY</td>
</tr>
<tr>
<td>Pumping Rate:</td>
<td>--</td>
</tr>
<tr>
<td>Suction Line:</td>
<td>1:3-IN</td>
</tr>
<tr>
<td>Receipt:</td>
<td>1:3-IN</td>
</tr>
<tr>
<td>Shell Manways:</td>
<td>1:20-IN - REMOVED FOR DOOR SHEET AT TIME OF INSPECTION</td>
</tr>
<tr>
<td>Leak Detection:</td>
<td>VISUAL</td>
</tr>
<tr>
<td>Secondary Containment:</td>
<td>CONCRETE COVER OF DIKE IS MOST LIKELY NOT IMPERMIABLE</td>
</tr>
<tr>
<td>Cathodic Protection:</td>
<td>NONE</td>
</tr>
<tr>
<td>Insulation:</td>
<td>NONE</td>
</tr>
<tr>
<td>Shell Coatings:</td>
<td>AGING BUT INTACT</td>
</tr>
<tr>
<td>Roof Coatings:</td>
<td>AGING BUT INTACT</td>
</tr>
<tr>
<td>Bottom Coating:</td>
<td>NONE</td>
</tr>
</tbody>
</table>
The settlement for the tank is planer or roughly approximates the shape of a cosine curve.

The evaluation of this "out-of-levelness" or settlement, utilizing the criterion for "out-of-plane distortion" as described in API 653 Appendix B.3.2, indicates that the settlement is well within the acceptable limits.

Applicable Standards:
Shell settlement surveys were conducted in accordance with the requirements of API 653 Figure B-1. These surveys were evaluated in accordance with the API 653 Appendix B.2.2 and compared with the acceptance criteria outlined in API 653 Appendix B.3.2.

Calculation of maximum permissible S or out-of-plane distortion per API 653 Appendix B.3.2 was made using:

![Shell Settlement Survey Graph](image)

Find: Shell Settlement API 653 4th edition Addendum 1 Appendix B Methodology

<table>
<thead>
<tr>
<th>Given:</th>
<th>Tank Number</th>
<th>Circumference</th>
<th>Spacing Between (ft)</th>
<th>Allowable Stress (psi)</th>
<th>Modules of Elasticity (ksi)</th>
<th>Tank Height (ft)</th>
<th>Survey Max (ft)</th>
<th>Curve Fit R² = 1.0000</th>
<th>Curve Fit OK R² ≥ 90%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>396</td>
<td>62.8 (ft)</td>
<td>15.7 L</td>
<td>30,000</td>
<td>29,000</td>
<td>20.0</td>
<td>0.942 (ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Results:

<table>
<thead>
<tr>
<th>Differential (ft)</th>
<th>Allowable</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.979</td>
<td>0.921</td>
</tr>
<tr>
<td>(in)</td>
<td>0.979</td>
<td>0.620</td>
</tr>
</tbody>
</table>

\[
[S] = \frac{L^2 \times Y \times 1.1}{2(E \times H)}
\]
Shell Thickness Calculation

Shell Thickness Calculations per API 653 4.3.3.1

Find: Minimum shell thickness (t min) for each shell course utilizing the API 653 standard for tanks less than 200 ft dia.

Given:

<table>
<thead>
<tr>
<th>Variable Identifier</th>
<th>Description</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Fill height (ft)</td>
<td>20.00</td>
<td>Measured from the base of each shell course (see column H in the table below)</td>
</tr>
<tr>
<td>D</td>
<td>Tank Diameter (ft)</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Specific Gravity</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Allow stress (psi)</td>
<td>Varies</td>
<td>Reference API 653 Table 4-1</td>
</tr>
<tr>
<td>E</td>
<td>Joint Efficiency</td>
<td>Varies</td>
<td>Reference API 653 table 4.2 for Welded and 4.3 for Riveted construction</td>
</tr>
<tr>
<td>M</td>
<td>Temp Modifier</td>
<td>1.00</td>
<td>Reference API 650 Appendix M Elevated temperature modifier</td>
</tr>
</tbody>
</table>

Solution:

Table for Calculating minimum shell thickness (t min) for each shell course

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>E</th>
<th>S</th>
<th>API 653 Required Calculation</th>
<th>Actual</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>(in)</td>
<td>(ft)</td>
<td>(ft)</td>
<td>%</td>
<td>(psi)</td>
<td>API 653 4.3.3.1</td>
</tr>
<tr>
<td>1</td>
<td>60.00</td>
<td>5</td>
<td>20.00</td>
<td>1 Lap Rivet</td>
<td>0.45</td>
<td>Riveted Unknown</td>
</tr>
<tr>
<td>2</td>
<td>60.00</td>
<td>5</td>
<td>15.00</td>
<td>1 Lap Rivet</td>
<td>0.45</td>
<td>Riveted Unknown</td>
</tr>
<tr>
<td>3</td>
<td>60.00</td>
<td>5</td>
<td>10.00</td>
<td>1 Lap Rivet</td>
<td>0.45</td>
<td>Riveted Unknown</td>
</tr>
<tr>
<td>4</td>
<td>60.00</td>
<td>5</td>
<td>5.00</td>
<td>1 Lap Rivet</td>
<td>0.45</td>
<td>Riveted Unknown</td>
</tr>
</tbody>
</table>

Shell Corrosion Rate Calculations API 653 6.3

© POWERS Engineering and Inspection, Inc. 2014

<table>
<thead>
<tr>
<th>E</th>
<th>O</th>
<th>Date(s)</th>
<th>Thickness</th>
<th>A</th>
<th>B</th>
<th>N</th>
<th>RCA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Year</td>
<td>Inspection Year</td>
<td>As Built</td>
<td>Measured</td>
<td>Calculated</td>
<td>Previous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Built or Replaced</td>
<td>(yr)</td>
<td>(yr)</td>
<td>(yr)</td>
<td>(in)</td>
<td>(in)</td>
</tr>
<tr>
<td>1</td>
<td>1940</td>
<td>2014</td>
<td>2014</td>
<td>0.188</td>
<td>0.188</td>
<td>0.187</td>
<td>0.100</td>
</tr>
<tr>
<td>2</td>
<td>1940</td>
<td>2014</td>
<td>2014</td>
<td>0.156</td>
<td>0.156</td>
<td>0.156</td>
<td>0.100</td>
</tr>
<tr>
<td>3</td>
<td>1940</td>
<td>2014</td>
<td>2014</td>
<td>0.156</td>
<td>0.156</td>
<td>0.156</td>
<td>0.100</td>
</tr>
<tr>
<td>4</td>
<td>1940</td>
<td>2014</td>
<td>2014</td>
<td>0.156</td>
<td>0.156</td>
<td>0.156</td>
<td>0.100</td>
</tr>
</tbody>
</table>

minimum: 0 0
SHELL ROLLOUT VIEW

0.16-IN NOMINAL 4TH COURSE
1 LAP ROW RIVETED
WELDED OUTSIDE ONLY

0.16-IN NOMINAL 3RD COURSE
1 LAP ROW RIVETED
WELDED OUTSIDE ONLY

0.16-IN NOMINAL 2ND COURSE
1 LAP ROW RIVETED
WELDED OUTSIDE ONLY

0.19-IN NOMINAL 1ST COURSE
1 LAP ROW RIVETED
WELDED OUTSIDE ONLY

CATWALK

2-IN WDO RIVETED/WELDED THREADED cl: 7
WELDED RIVETED REPAIR

3-IN SUCTION RIVETED/WELDED THREADED cl: 9
WELDED RIVETED REPAIR

CHANNEL WELDED TO SHELL cl: 48

3-IN OVERFLOW PIPING cl: 2/17.5
Rqd: 24 x 3w

2-1/2-IN RIVETED TOP ANGLE INWARD

AMANDONED BRACKET

COATING FAILURE PEELING THROUGHOUT SHELL

INWARD SHELL DISTORTION

CORROSION STREAK

ISOLED SHELL PITTING 0.4 DEEP

20-FT

20-FT

DOOR SHEET

DOOR SHEET

INWARD SHELL DISTORTION

GROUNDED NOT CONNECTED

INTERNAL PIPING OPEN 3FT FROM TANK BOTTOM
CONE ROOF LAYOUT

- **20-IN MANWAY**
- **3-IN OCECO FA & PVV**
- **4-IN NOZZLE & PVC PIPING**
- **3-IN OPEN 90° DOWN NOZZLE**
- **8-IN GAUGE HATCH**
- **3-IN PLUG & CAP**
- **3-IN RIVETED**

COATING FAILURE, CRACKING & PEELING ALONG ROOF DECK & APPURTEANCES

MINOR CORROSION & RUST STAINING
APPENDIX A API 653 CHECKLIST
1.1.0 All

1.1.1 Concrete Ring

2. C.1.1.1.a Inspect for broken concrete, spalling, and cracks, particularly under backup bars used in welding butt welded annular rings under the shell. Foundation type undetermined.

3. C.1.1.1.b Inspect drain openings in ring, back of waterdraw basins and top surface of ring for indications of bottom leakage. N/A

4. C.1.1.1c Inspect for cavities under foundation and vegetation against bottom of tank. Visually Acceptable

5. C.1.1.1d Check that runoff rainwater from the shell drains away from tank. rain water drains towards base of shell and tank bottom

6. C.1.1.1e Check for settlement around perimeter of tank. no obvious indications of settlement observed

1.1.2 Asphalt

7. C.1.1.2.a Check for settling of tank into asphalt base which would direct runoff rain water under the tank instead of away from it. N/A

8. C.1.1.2.b Look for areas where leaching of oil has left rock filler exposed, which indicates hydrocarbon leakage. N/A

1.1.3 Oiled Dirt or Sand

9. C.1.1.3.a Check for settlement into the base which would direct runoff rain water under the tank rather than away from it. the concrete containment around the perimeter of the tank slopes towards the base of the shell . . . Inspectors opinion that condition is asbuilt and not from settlement

1.1.4 Rock

10. C.1.1.4.a Presence of crushed rock under the steel bottom usually results in severe underside corrosion. No access at time of the inspection however coupons to be recovered when tank is removed.

1.1.5 Site Drainage

11. C.1.1.5.a Check site for drainage away from the tank and associated piping and manifolds. site drains towards tank

12. C.1.1.5.b Check operating condition of the dike drains. NOT PERFORMED

1.1.6 Housekeeping

13. C.1.1.6.a Inspect the area for buildup of trash, vegetation, and other inflammables buildup. Visually Acceptable

1.2 SHELLS

1.2.1 External Visual Inspection

14. C.1.2.1.a Visually inspect for paint failures, pitting, and corrosion. Isolated areas of failure and active corrosion. (see photos and report

15. C.1.2.1.b Clean off the bottom angle area and inspect for corrosion and thinning on plate and weld. the bottom extension was visually inspected

16. C.1.2.1.c Inspect the bottom-to-foundation seal, if any. no seal present . . .

1.2.2 Internal (Floating Roof Tank)

17. C.1.2.2.a Visually inspect for grooving, corrosion, pitting, and coating failures. N/A

1.2.3 Riveted Shell Inspection

18. C.1.2.3.a Inspect external surface for rivet and seam leaks Visually Acceptable

19. C.1.2.3.b Locate leaks by sketch or photo (location will be lost when shell is abrasive cleaned for painting). None identified, however when tank is filled inspector expects some seeps would be present

20. C.1.2.3.c Inspect rivets for corrosion loss and wear some corrosion loss was observed (see photos)

21. C.1.2.3.d Inspect vertical seams to see if they have been full fillet lap welded to increase joint efficiency Ok

22. C.1.2.3.e If no record exists of vertical riveted seams, dimension and sketch (or photograph) the rivet pattern: number of rows, rivet size, pitch length, and note whether the joint is butt riveted or lap riveted. shell and roof are single rivet row lap construction (see photos)
1.2.4 Wind Girder (Floating Roof Tanks)

23 C.1.2.4.a Inspect windgirder and handrail for corrosion damage (paint failure, pitting, corrosion product buildup), especially where it occurs at tack welded junction, and for broken welds. N/A

24 C.1.2.4.b Check support welds to shell for pitting, especially on shell plates. N/A

25 C.1.2.4.c Note whether supports have reinforcing pads welded to shell. N/A

1.3 SHELL APPURTENANCES

1.3.1 Manways and Nozzles

26 C.1.3.1.a Inspect for cracks or signs of leakage on weld joint at nozzles, manways, and reinforcing plates. difficult to assess with tank empty

27 C.1.3.1.b Inspect for shell plate dimpling around nozzles, caused by excessive pipe deflection. no distortion around nozzles was observed however shell has numerous areas of isolated shell distortion

28 C.1.3.1.c Inspect for flange leaks and leaks around bolting. Ok

29 C.1.3.1.d Inspect sealing of insulation around manways and nozzles. N/A

30 C.1.3.1.e Check for inadequate manway flange and cover thickness on mixer manways. N/A

1.3.2 Tank Piping Manifolds

31 C.1.3.2.a Inspect manifold piping, flanges, and valves for leaks. Visually Acceptable

32 C.1.3.2.b Inspect fire fighting system components none present

33 C.1.3.2.c Check for anchored piping which would be hazardous to the tank shell or bottom connections during earth movement. Visually Acceptable

34 C.1.3.2.d Check for adequate thermal pressure relief of piping to the tank. none present

35 C.1.3.2.e Check operation of regulators for tanks with purge gas systems. N/A

36 C.1.3.2.f Check sample connections for leaks and for proper valve operation none present

37 C.1.3.2.g Check for damage and test the accuracy of temperature indicators. none present

38 C.1.3.2.h Check welds on shell-mounted davit clips above valves 6 inches and larger. none present

1.3.3 Autogauge System

39 C.1.3.3.a Inspect autogauge tape guide and lower sheave housing (floating swings) for leaks none present

40 C.1.3.3.b Inspect autogauge head for damage none present

41 C.1.3.3.c Bump the checker on autogauge head for proper movement of tape. none present

42 C.1.3.3.d Identify size and construction material of autogauge tape guide (floating roof tanks). N/A

43 C.1.3.3.e Ask operator if tape tends to hang up during tank roof movement (floating roof tanks). N/A

44 C.1.3.3.f Compare actual product level to the reading on the autogauge (maximum variation is 2 inches). N/A

45 C.1.3.3.g On floating roof tanks, when the roof is in the lowest position, check that no more than two feet of tape are exposed at the end of the tape guide. N/A

46 C.1.3.3.h Inspect condition of board and legibility of board-type autogauges. N/A

47 C.1.3.3.i Test freedom of movement of marker and float. N/A

1.3.4 Shell-Mounted Sample Station

48 C.1.3.4.a Inspect sample lines for function of valves and plugging of lines, including drain or return-to-tank line. none present

49 C.1.3.4.b Check circulation pump for leaks and operating problems. none present

50 C.1.3.4.c Test bracing and supports for sample lines and equipment. none present

1.3.5 Heater (Shell Manway Mounted)

51 C.1.3.5.a Inspect condensate drain for presence of oil indicating leakage none present

1.3.6 Mixer

52 C.1.3.6.a Inspect for proper mounting flange and support. none present

53 C.1.3.6.b Inspect for leakage. none present

54 C.1.3.6.c Inspect condition of power lines and connections to mixer. none present

1.3.7 Swing Lines: Winch Operation

55 C.1.3.7.a Non floating. Raise, then lower the swing line with the winch, and check for cable tightness to confirm that swing line lowered properly. NOT PERFORMED the internal swing line has a chain that doesn't appear to be connected to winch or other activator.
1.3.8 Swing Lines: External Guide System

58 C.1.3.8.a Check for leaks at threaded and flanged joints.

N/A

1.3.9 Swing Lines: Identify Ballast Varying Need

59 C.1.3.9.a Check for significant difference in stock specific gravity.

N/A

1.3.9.1 Swing Lines: Cable Material and Condition

60 C.1.3.10.a For non-stainless steel cable, check for corrosion over entire length.

N/A

61 C.1.3.10.b All cable: check for wear or fraying.

N/A

1.3.9.1 Swing Lines: Product Sample Comparison

62 C.1.3.11.a Check for water or gravity differences that would indicate a leaking swing joint.

N/A

1.3.9.1 Swing Lines: Target

63 C.1.3.12.a Target should indicate direction of swing opening (up or down) and height above bottom where suction will be lost with swing on bottom support.

N/A

1.4 ROOFS

1.4.1 Deck Plate Internal Corrosion

64 C.1.4.1.a For safety, before accessing the roof, check with ultrasonic instrument or lightly use a ball peen hammer to test the deck plate near the edge of the roof for thinning. (Corrosion normally attacks the deck plate at the edge of a fixed roof and at the raft)

Inspector did not leave roof gaugers platform to conduct inspection.

1.4.2 Deck Plate External Corrosion

65 C.1.4.2.a Visually inspect for paint failure, holes, pitting, and corrosion product on the roof deck.

SEVERAL ISOLATED AREAS OF COATING FAILURE AND CORROSION THAT MAY EVENTUALLY PRODUCE THRU HOLES.

1.4.3 Roof Deck Drainage

66 C.1.4.3.a Look for indication of standing water. (Significant sagging of fixed roof deck indicates potential rafter failure. Large standing water areas on a floating roof indicate inadequate drainage design or, if on one side, a nonlevel roof with possible leaking

N/A

1.4.4 Level of Floating Roof

67 C.1.4.4.a At several locations, measure distance from roof rim to a horizontal weld seam above the roof. A variance in the readings indicates a nonlevel roof with possible shell out-of-round, out-of-plumb, leaking pontoons, or hang-up. On small diameter tanks, an

N/A

1.4.5 Internal Floating Roof

68 C.1.4.5.a Test for explosive gas on top of the internal floating roof. Readings could indicate a leaking roof, leaking seal system, or inadequate ventilation of the area above the internal floating roof.

N/A

1.4.6 Roof Insulation

69 C.1.4.6.a Visually inspect for cracks or leaks in the insulation weather coat where runoff rain water could penetrate the insulation.

N/A

70 C.1.4.6.b Inspect for wet insulation under the weather coat.

N/A

71 C.1.4.6.c Remove small test sections of insulation and check roof deck for corrosion and holes near the edge of the insulated area.

N/A

1.4.7 Floating Roof Seal Systems

72 C.1.4.7.a Measure and record maximum seal-to-shell gaps at: 1.Low pump out. 2. Mid-shell. 3.High liquid level.

NOT PERFORMED

73 C.1.4.7.b Measure and record annular space at 30 foot spacing (minimum of four quadrants) around roof and record. Measurements should be taken in directly opposite pairs. 1.Opposite pair 1. 2. Opposite pair 2.

N/A

74 C.1.4.7.c Check if seal fabric on primary shoe seals is pulling shoes away from shell (fabric not wide enough).

N/A

75 C.1.4.7.d Inspect fabric for deterioration, holes, tears, and cracks.

N/A
1.5 ROOF APPURTENANCES

1.5.1 Sample Hatch

82 C.1.5.1.a Inspect condition and functioning of sample hatch cover. Ok
83 C.1.5.1.b On tanks governed by Air Quality Monitoring District rules, check for the condition of seal inside hatch cover. N/A
84 C.1.5.1.c Check for corrosion and plugging on thief and gauge hatch cover. N/A
85 C.1.5.1.d Where sample hatch is used to reel gauge stock level, check for marker and tab stating hold off distance. none present
86 C.1.5.1.e Check for reinforcing pad where sample hatch pipe penetrates the roof deck. none present riveted flange to roof deck
87 C.1.5.1.f On floating roof sample hatch and recoil systems, inspect operation of recoil reel and condition of rope. N/A
88 C.1.5.1.g Test operation of system. Not Preformed
89 C.1.5.1.h On ultra clean stocks such as JP4, check for presence and condition of protective coating or liner inside sample hatch (preventing rust from pipe getting into sample). N/A

1.5.2 Gauge Well

90 C.1.5.2.a Inspect visible portion of the gauge well for thinning, size of slots, and cover condition N/A
91 C.1.5.2.b Check for a hold off distance marker and tab with hold off distance (legible). N/A
92 C.1.5.2.c On floating roofs, inspect condition of roof guide for gauge well, particularly the condition of the rollers for groove. N/A
93 C.1.5.2.d If accessible, check the distance from the gauge well pipe to the tank shell at different levels. N/A
94 C.1.5.2.e If tank has a gauge well washer, check valve for leakage and for presence of a bull plug or blind flange. N/A

1.5.3 Fixed Roof Scaffold Support

95 C.1.5.3.a Inspect scaffold support for corrosion, wear, and structural soundness. The catwalk roof access handrail is 'wobbly' unable to support a 1000 lb load because of the attachment to the angle at its base is flexing in torsion. Because the grating rest inside of the support angle a 'toe board of less than 1-in is provided'.

1.5.4 Autogauge: Inspection Hatch and Guides (Fixed Roof)

96 C.1.5.4.a Check the hatch for corrosion and missing bolts. none present
97 C.1.5.4.b Look for corrosion on the tape guide/s and float guides wire anchors. none present

1.5.5 Autogauge: Float Well Cover

98 C.1.5.5.a Inspect for corrosion. N/A
99 C.1.5.5.b Check tape cable for wear or fraying caused by rubbing on the cover. N/A

1.5.6 Sample Hatch (Internal Floating Roof)

100 C.1.5.6.a Check overall conditions. N/A
101 C.1.5.6.b When equipped with a fabric seal, check for automatic sealing after sampling. N/A
102 C.1.5.6.c When equipped with a recoil reel opening device, check for proper operations N/A

1.5.7 Roof-Mounted Vents (Internal Floating Roof)

103 C.1.5.7.a Check condition of screens, locking and pivot pins. N/A

1.5.8 Gauging Platform Drip Ring

104 C.1.5.8.a On fixed roof tanks with drip rings under the gauging platform or sampling area, inspect for plugged drain return to the tank N/A
1.5.9 Emergency Roof Drains
105 C.1.5.9.a Inspect vapor plugs for emergency drain: that seal fabric discs are slightly smaller than the pipe ID and that fabric seal is above the liquid level.

1.5.9.1 Removable Roof Leg Racks
106 C.1.5.10.a Check for leg racks on roof.

1.5.9.2 Vacuum Breakers
107 C.1.5.11.a Report size, number, and type of vacuum breakers. Inspect vacuum breakers. If high legs are set, check for setting of mechanical breaker in high leg position.

1.5.9.3 Rim Vents
108 C.1.5.12.a Check condition of the screen on the rim vent cover.
109 C.1.5.12.b Check for plating off or removal of rim vents where jurisdictional rules do not permit removal.

1.5.9.4 Pontoon Inspection Hatches
110 C.1.5.13.a Open pontoon inspection hatch covers and visually check inside for pontoon leakage.
111 C.1.5.13.b Test for explosive gas (an indicator of vapor space leaks).
112 C.1.5.13.c If pontoon hatches are equipped with locked down covers, check for vent tubes. Check that vent tubes are not plugged up. Inspect lock down devices for condition and operation.

1.6 ACCESS STRUCTURES

1.6.1 Handrails
113 C.1.6.1.a Identify and report type (steel pipe, galvanized pipe, square tube, angle) and size of handrails. Handrails are 3/4-in round bar and the 40-in vertical support is 1/2-in x 3-in flat bar. Do not appear to be able to support 1000 lbs osha loading.

114 C.1.6.1.b Inspect for pitting and holes, paint failure.
115 C.1.6.1.c Inspect attachment welds. Ok
116 C.1.6.1.d Identify cold joints and sharp edges. Inspect the handrails and midrails. Ok
117 C.1.6.1.e Inspect safety drop bar (or safety chain) for corrosion, functioning, and length. none present
118 C.1.6.1.f Inspect the handrail between the rolling ladder and the gaging platform for a hazardous opening when the floating roof is at its lowest level.

1.6.2 Platform Frame
119 C.1.6.2.a Inspect frame for corrosion and paint failure. Ok
120 C.1.6.2.b Inspect the attachment of frame to supports and supports to tank for corrosion and weld failure. Ok
121 C.1.6.2.c Check reinforcing pads where supports are attached to shell or roof. none present
122 C.1.6.2.d Inspect the surface that deck plate or grating rests on, for thinning and holes. Ok
123 C.1.6.2.e Check that flat-surface to flat-surface junctures reseal welded. Ok

1.6.3 Deck Plate and Grating
124 C.1.6.3.a Inspect deck plate for corrosion-caused thinning or holes (not drain holes) and paint failure. riveted roof with isolated areas of active corrosion and some internal seeps during rain. No obvious corrosion holes most likely loose rivets or lap joints

125 C.1.6.3.b Inspect plate-to-frame weld for rust scale buildup. Ok
126 C.1.6.3.c Inspect grating for corrosion-caused thinning of bars and failure of welds Ok
127 C.1.6.3.d Check grating tie down clips. Where grating has been retrofitted to replace plate, Ok

1.6.4 Stairway Stringers
128 C.1.6.4.a Inspect spiral stairway stringers for corrosion, paint failure, and weld failure. Inspect attachment of stairway treads to stringer. no spiral stairway present
129 C.1.6.4.b Inspect stairway supports to shell welds and reinforcing pads. none present
130 C.1.6.4.c Inspect steel support attachment to concrete base for corrosion. N/A

1.6.5 Rolling Ladder
131 C.1.6.5.a Inspect rolling ladder stringers for corrosion. no rolling ladder present
132 C.1.6.5.b Identify and inspect ladder fixed rungs (square bar, round bar, angles) for weld attachment to stringers and corrosion, particularly where angle rungs are welded to stringers. N/A
2.10 OVERVIEW

2.1 Safety

144 C.2.1.a Check that tank has been cleaned, is gas free, and safe for entry.
Ok, significant dirt and mud was present on the bottom during the inspection. Inspectors utilized scrapers, brooms and rags to attempt to clean the bottom for inspection. Despite the conditions product side corrosion was visually identified.

145 C.2.1.b Check that the tank is completely isolated from product lines, all electrical power, and steam lines.
Ok

146 C.2.1.c Check that roof is adequately supported, including fixed roof structure and floating roof legs
the 3-in center column was 6 6/8-in out of plumb. Pipe columns and not be fully assessed because of the potential for undetected internal corrosion. In order to determine the extent of internal corrosion extensive ultrasound inspection would be required.

147 C.2.1.d Check for presence of failing object hazards, such as corroded-through roof rafters, asphalt stalactites, and trapped hydrocarbons in unopened or plugged equipment or appurtenances, ledges, etc.
Ok

148 C.2.1.e Inspect for slipping hazards on the bottom and roof decks.
Ok

149 C.2.1.f Inspect structural welds on accessways and clips
Ok

150 C.2.1.g Check surfaces needing inspection for a heavy-scale buildup and check weld seams and oily surfaces where welding is to be done. Note areas needing more cleaning, including blasting.
At the time of the inspection the bottom was covered with mud and dirt that was scraped and swept by the inspectors. This condition most likely did not affect the quality of the MFE bottom scan but visual inspection and marking of indications was.

2.12 TANK EXTERIOR

2.2 Inspection

151 C.2.2.a Inspect appurtenances opened during cleaning such as lower floating swing sheave assemblies, nozzle interiors (after removal of valves).
Ok

152 C.2.2.b Hammer test or ultrasonically test the roof.
UT conducted at the platform. Visual inspection from the top and underside of the riveted cone roof did not indicate the presence of significant corrosion. Nominal UT thru coatings 0.18-in.

153 C.2.2.c Enter and inspect the floating roof pontoon compartments.
N/A

2.13 BOTTOM INTERIOR SURFACE
2.3 Inspection

154 C.2.3.a Using a flashlight held close to and parallel to the bottom plates, and using the bottom plate layout as a guide, visually inspect and hammer test the entire bottom.

155 C.2.3.b Measure the depth of pitting and describe the pitting appearance (sharp edged, lake type, dense, scattered, etc.)

156 C.2.3.c Mark areas requiring patching or further inspection.

157 C.2.3.d Mark locations for turning coupons for inspection.

158 C.2.3.e Inspect all welds for corrosion and leaks, particularly the shell-to-bottom weld.

159 C.2.3.f Inspect sketch plates for corrosion.

160 C.2.3.g Locate and mark voids under the bottom.

161 C.2.3.h Record bottom data on a layout sketch using the existing bottom plates as a grid. List the number and sizes of patches required.

162 C.2.3.i Vacuum test the bottom lap welds.

163 C.2.3.j Hammer test or ultrasonically examine any slightly discolored spots or damp areas.

164 C.2.3.k Check for reinforcing pads under all bottom attached clips, brackets, and supports

165 C.2.3.l Inspect floating roof leg pads for pitting or cutting, and excessive dimpling (indicating excessive loading).

166 C.2.3.m Check the column bases of fixed roof supports for adequate pads and restraining clips.

167 C.2.3.n In earthquake zones 3 and 4, check that roof supports are not welded down to the tank bottom, but are only restrained from horizontal movement.

168 C.2.3.o Check area beneath swing line cable for indications of cable cutting or dragging.

169 C.2.3.p Mark old oil and air test connection for removal and patching.

170 C.2.3.q Identify and report low areas on the bottom that do not drain adequately.

171 C.2.3.r Inspect coating for holes, disbanding, deterioration, and discolorization.

2.4 Inspection

172 C.2.4.a On cone up bottoms, closely inspect and gauge the depth of metal loss on the lower 2 to 4 inches of the shell (area of standing water).

173 C.2.4.b Measure the depth of pitting on each course.

174 C.2.4.c Inspect and estimate the amount of metal loss on the heads of rivets and bolts
175 C.2.4.d Inspect shell-to-bottom riveted lap joints.

Shell to bottom joint is a lap welded 3 x 3 angle toe out from base of shell. Bottom is lap welded to this angle 3-in outside of the center line of the shell. 15 sq feet of bottom under this angle could not be inspected. (see drawings)

176 C.2.4.e Inspect for vertical grooving damage from seal assembly protrusions. N/A

177 C.2.4.f Inspect existing protective coatings for damage, deterioration, and disbonding no internal coatings present . . . external shell and roof coatings are nearing end of useful life . . . Failure from pealing and corrosion present. See photos.

178 C.2.4.g Check for areas of rubbing (indicating too much pressure by the seal assembly shoes or inadequate annular space). N/A

179 C.2.4.h Visually Acceptable

Visually inspect the shell plates and seams for indications of leakage. If the shell has riveted or bolted seams, record the leak locations by film or chart in case the locations are lost during surface preparation for painting

180 C.2.4.i Measure annular space at 40-foot intervals. Visually Acceptable

visually acceptable . . . Some insolated shell distortion (see photos)

2.15 SHELL-MOUNTED OVERFLOWS

2.5 Inspection

182 C.2.5.a Inspect overflow for corrosion and adequate screening. N/A

183 C.2.5.b Check location of overflow that it is not above any tank valves or equipment. none present

2.16 ROOF INTERIOR SURFACE

2.6.1 General

184 C.2.6.1.a Visually inspect the underside surface of the roof plates for holes, scale buildup, and pitting. Visually Acceptable

185 C.2.6.1.b Hammer test or ultrasonically examine to check for thin areas, particularly in the vapor space of floating roofs and at edge of roof on cone roof tank. NO ACCESS

186 C.2.6.1.c Check all clips, brackets, braces, etc., welded to the roof deck plate for welded reinforcing pads and see that they have not broken free. NO ACCESS

187 C.2.6.1.d If no pad is present, penetrant test for cracking of the weld or deck plate. Not Performed

188 C.2.6.1.e Inspect for protective coating for breaks, disbandment, and deterioration none present

189 C.2.6.1.f Not Performed Spark test the interior surface coating if recoating is not planned.

2.6.2 Fixed Roof Support Structure

190 C.2.6.2.a Inspect the support columns for thinning in the upper two feet. Visually Acceptable

191 C.2.6.2.b On API columns (two channels welded together) check for corrosion scale breaking the tack welds, unless the joint between the channels is completely seal welded. N/A

192 C.2.6.2.c Check that the reinforcing pad on the bottom is seal welded to the tank bottom with horizontal movement restraining clips welded to the pad. Repad on tank(s) 395 and 397 are not seal welded. Tank 396 does not have a repad. appears not to be filled with concrete

193 C.2.6.2.d Determine if pipe column supports are concrete filled or open pipe. If open pipe, check for a drain opening in the bottom of the pipe Visually Acceptable

194 C.2.6.2.e Inspect and gauge rafters for thinning, particularly near the center of the roof. Report metal loss. Tank 395 and 397 rafters are visually acceptable. Tank 396 has 4 twisted or bowed rafters out of 12 present.

195 C.2.6.2.a Check for loose or twisted rafters.

196 C.2.6.2.b Inspect girders for thinning and check that they are attached securely to the top of the columns. No girders present

197 C.2.6.2.c Report if the columns have cross bracing in the area between the low pump out of the top of the shell (for future internal floating roof installation). single pipe column construction, no bracing present

198 C.2.6.2.d Inspect and report presence of any roof-mounted swing line bumpers. N/A

199 C.2.6.2.e Photograph the roof structure if no rafter layout drawing exists. See Report

2.17 FIXED ROOF APPURTENANCES

© 2008 PE&I, Inc
2.7.1 Inspection and Light Hatches

- **200.** C.2.7.1.a: Inspect the hatches for corrosion, paint and coating failures, holes, and cover sealing. **N/A**
- **201.** C.2.7.1.b: On loose covers, check for a safety chain in good condition. **N/A**
- **202.** C.2.7.1.c: On light hatches over 30 inches across, check for safety rods. **N/A**
- **203.** C.2.7.1.d: Inspect the condition of the gaskets on bold or latched down hatch covers. **N/A**

2.7.2 Staging Support Connection

- **204.** C.2.7.2.a: Inspect the condition of the staging support for corrosion. **N/A**

2.7.3 Breathers and Vents

- **205.** C.2.7.3.a: Inspect and service the breather. **N/A**
- **206.** C.2.7.3.b: Inspect screens on vents and breathers. **N/A**

The tank appears to have a 3-in PV vent w flame arrestor installed on the cone roof. The Vent has the name OCECO cast. It is very important that this type vent be serviced regularly, to prevent damage from over or under pressure.

2.7.4 Emergency PN Hatches

- **207.** C.2.7.4.a: Inspect and service pressure/vacuum hatches. (Setting should be high enough to prevent chattering of breather during normal operation. See breather manufacturer's guide.) **N/A**
- **208.** C.2.7.4.b: Inspect liquid seal hatches for corrosion and proper liquid level in the seal. **N/A**

2.7.5 Sample Hatch

- **209.** C.2.7.5.a: Inspect sample hatch for corrosion. **N/A**
- **210.** C.2.7.5.b: Check that the cover operates properly. **N/A**
- **211.** C.2.7.5.c: If the tank has no gauge well, check for a hold off distance marker and check measurement. **N/A**

2.8 FLOATING ROOF

2.8.1 Roof Deck

- **212.** C.2.8.1.a: Hammer test the area between roof rim and shell. (If access for hammer testing is inadequate, measure the distance from the bottom edge of the roof to the corroded area and then hammer test from inside the pontoon.) **N/A**
- **213.** C.2.8.1.b: In sour water service, clean and test all deck plate weld seams for cracking unless the lower laps have been seal welded. **N/A**
- **214.** C.2.8.1.c: Check that either the roof drain is open or the drain plug in the roof is open in case of unexpected rain. **N/A**
- **215.** C.2.8.1.d: On flat bottomed and cone bottom roof decks, check for a vapor dam around the periphery of the roof. The dam should be continuous without break to prevent escape of vapors to the seal area from under the center of the roof. **N/A**

2.8.2 Floating Roof Pontoons

- **216.** C.2.8.2.a: Visually inspect each pontoon for liquid leakage. **N/A**
- **217.** C.2.8.2.b: Run a light wire through the goose neck vents on locked down inspection hatch covers to make sure they are open. **N/A**
- **218.** C.2.8.2.c: Inspect lockdown latches on each cover. **N/A**
- **219.** C.2.8.2.d: Check and report if each pontoon is: 1. Vapor tight (bulkhead seal welded on one side on bottom, sides, and top), 2. Liquid tight seal welded on bottom and sides only), or 3. Unacceptable (minimum acceptable condition is liquid tight). **N/A**

2.8.3 Floating Roof Cutouts

- **220.** C.2.8.3.a: Inspect underside of cutouts for mechanical damage. **N/A**
- **221.** C.2.8.3.b: Inspect welds for cracks. **N/A**
- **222.** C.2.8.3.c: Inspect plate for thinning, pitting, and erosion. **N/A**
- **223.** C.2.8.3.d: Measure mixer cutouts and record plate thickness for future mixer installation or replacement. Plate thickness **N/A**

2.8.4 Floating Roof Supports

- **224.** C.2.8.4.a: Inspect fixed low and removable high floating roof legs for thinning. **N/A**
- **225.** C.2.8.4.b: Inspect for notch at bottom of legs for drainage. **N/A**
API 653 Inspection Checklist
Freedom Industries
Tank: 396
Charleston, WV

2.18 FLOATING ROOF SEAL ASSEMBLIES

2.8.1 Primary Shoe Assembly
233 C.2.9.1.a Remove four sections of foam log (foam filled seals) for inspection on 90' locations.
234 C.2.9.1.b Inspect hanger attachment to roof rim for thinning, bending, broken welds, and wear of pin holes.
235 C.2.9.1.c Inspect clips welded to roof rim for thinning.
236 C.2.9.1.d Shoes-inspect for thinning and holes in shoes.
237 C.2.9.1.e Inspect for bit-metal bolts, clips, and attachments.
239 C.2.9.1.g Measure length of fabric from top of shoe to roof rim, and check against maximum anticipated annular space as roof operates.
240 C.2.9.1.h Inspect any modification of shoes over shell nozzles, mixers, etc., for clearance.
241 C.2.9.1.i Inspect shoes for damage caused by striking shell nozzles, mixers, etc.

2.8.2 Primary Toroidal Assembly
242 C.2.9.2.a Inspect seal fabric for wear, deterioration, holes, and tears.
243 C.2.9.2.b Inspect hold down system for buckling or bending.
244 C.2.9.2.c Inspect foam for liquid absorption and deterioration.

2.8.3 Rim Mounted Secondaries
245 C.2.9.3.a Inspect the rim-mounted bolting bar for corrosion and broken welds.
246 C.2.9.3.b Measure and chart seal-to-shell gaps.
247 C.2.9.3.c Visually inspect seam from below, looking for holes as evident by light.
248 C.2.9.3.d Inspect fabric for deterioration and stiffness.
249 C.2.9.3.e Inspect for mechanical damage, corrosion, and wear on tip in contact with shell.
250 C.2.9.3.e Inspect for contact with obstructions above top of shell.

2.20 FLOATING ROOF APPURTENANCES

2.9.1 Roof Manways
251 C.2.10.1.a Inspect walls of manways for pitting and thinning.
252 C.2.10.1.b On tanks with interface autogauges, check seal around gauge tape cable and guide wires through manway cover.
253 C.2.10.1.c Inspect cover gasket and bolts.

2.9.2 Rim Vent
254 C.2.10.2.a Check rim vent for pitting and holes.
255 C.2.10.2.b Check vent for condition of screen.
256 C.2.10.2.c On floating roof tanks where the environmental rules require closing off the vent, check the vent pipe for corrosion at the pipe-to-rim joint and check that the blinding is adequate.

2.9.3 Vacuum Breaker, Breather Type
257 C.2.10.3.b Service and check operation of breather valve.
258 C.2.10.3.c Check that nozzle pipe projects no more than 1/2 inch below roof deck.

2.9.4 Vacuum Breaker, Mechanical Type
259 C.2.10.4.a Inspect the stem for thinning. Measure how far the vacuum breaker cover riser is off the pipe when the roof is resting on high or low legs. A. On high legs: b.

2.9.5 Closed Drain Systems: Drain Basins
2.9.9 Roof Drains: Open Systems, Including Emergency Drains

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>260</td>
<td>C.2.10.5.a</td>
</tr>
<tr>
<td>261</td>
<td>C.2.10.5.b</td>
</tr>
<tr>
<td>262</td>
<td>C.2.10.5.c</td>
</tr>
</tbody>
</table>

2.9.9.1 Closed Drain Systems: Fixed Drain Line on Tank Bottom

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>270</td>
<td>C.2.10.7.a</td>
</tr>
<tr>
<td>271</td>
<td>C.2.10.7.b</td>
</tr>
<tr>
<td>272</td>
<td>C.2.10.7.c</td>
</tr>
</tbody>
</table>

2.9.9.2 Closed Drain Systems: Flexible Pipe Drain

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>273</td>
<td>C.2.10.8.a</td>
</tr>
<tr>
<td>274</td>
<td>C.2.10.8.b</td>
</tr>
<tr>
<td>275</td>
<td>C.2.10.8.c</td>
</tr>
<tr>
<td>276</td>
<td>C.2.10.8.d</td>
</tr>
</tbody>
</table>

2.9.9.3 Closed Drain Systems: Articulated Joint Drain

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>277</td>
<td>C.2.10.9.f</td>
</tr>
<tr>
<td>278</td>
<td>C.2.10.9.g</td>
</tr>
<tr>
<td>279</td>
<td>C.2.10.9.h</td>
</tr>
<tr>
<td>280</td>
<td>C.2.10.9.i</td>
</tr>
</tbody>
</table>

2.9.9.4 Autogauge System and Alarms

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>281</td>
<td>C.2.10.10.a</td>
</tr>
<tr>
<td>282</td>
<td>C.2.10.10.b</td>
</tr>
<tr>
<td>283</td>
<td>C.2.10.10.c</td>
</tr>
<tr>
<td>284</td>
<td>C.2.10.10.d</td>
</tr>
<tr>
<td>285</td>
<td>C.2.10.10.e</td>
</tr>
<tr>
<td>286</td>
<td>C.2.10.10.f</td>
</tr>
<tr>
<td>287</td>
<td>C.2.10.10.g</td>
</tr>
<tr>
<td>288</td>
<td>C.2.10.10.h</td>
</tr>
<tr>
<td>289</td>
<td>C.2.10.10.i</td>
</tr>
<tr>
<td>290</td>
<td>C.2.10.10.j</td>
</tr>
<tr>
<td>291</td>
<td>C.2.10.10.k</td>
</tr>
<tr>
<td>292</td>
<td>C.2.10.10.l</td>
</tr>
<tr>
<td>293</td>
<td>C.2.10.10.m</td>
</tr>
<tr>
<td>294</td>
<td>C.2.10.10.n</td>
</tr>
<tr>
<td>295</td>
<td>C.2.10.10.o</td>
</tr>
<tr>
<td>296</td>
<td>C.2.10.10.p</td>
</tr>
</tbody>
</table>

2.21 COMMON TANK APPURTENANCES

2.9.95 Gauge Well

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>297</td>
<td>C.2.11.1.a</td>
</tr>
</tbody>
</table>
2.9.66 Sampling Systems: Roof Sample Hatches

298 C.2.11.1.b Check for corrosion on the pipe joint. Check that sample cords, weights, thermometers, etc., have been removed from the pipe.
N/A

299 C.2.11.1.c Check for cone at bottom end of pipe about one foot above the bottom.
N/A

300 C.2.11.1.d Check condition of well washer pipe and that its flared end is directed at the near side of the hold off pad.
N/A

301 C.2.11.1.e Check that supports for gauge well are welded to pad or to shell and not directly to bottom plate.
N/A

302 C.2.11.1.f Check operation of gauge well cover.
N/A

303 C.2.11.1.g Check presence of a hold-off distance marker in well pipe and record hold-off distance.
N/A

304 C.2.11.1.h Identify and report size and pipe schedule, and whether pipe is solid or slotted. Report slot size.
N/A

305 C.2.11.1.i Check that the hold-off distance plate is seal welded to the bottom and that any gauge well supports are welded to the plate and not directly to the bottom.
N/A

306 C.2.11.1.j Inspect vapor control float and cable.
N/A

307 C.2.11.1.k Check for presence and condition of gauge well washer.
N/A

308 C.2.11.1.l Check for bull plug or plate blind on gauge well washer valve.
N/A

309 C.2.11.1.m Inspect gauge well guide in floating roof for pitting and thinning.
N/A

310 C.2.11.1.n Inspect the guide rollers and sliding plates for freedom of movement.
N/A

311 C.2.11.1.o Inspect condition of gauge well pipe seal system.
N/A

312 C.2.11.1.p On black oil and diesel services: if gauge well is also used for sampling, check for presence of a thief- and gauge-type hatch to avoid spillage.
N/A

313 C.2.11.1.q Visually inspect inside of pipe for pipe weld protrusions which could catch or damage vapor control float.
N/A

2.9.67 Shell Nozzles

314 C.2.11.2.a Inspect roof mounted sample hatches for reinforcing pads and cracking.
N/A

315 C.2.11.2.b Inspect cover for operation.
N/A

316 C.2.11.2.c For tanks complying with Air Quality Monitoring District rules, inspect sample hatch covers for adequate sealing.
N/A

317 C.2.11.2.d Check horizontal alignment of internal floating roof sample hatches under fixed roof hatches.
N/A

318 C.2.11.2.e Inspect the sealing system on the internal floating roof sample hatch cover.
N/A

319 C.2.11.2.f Inspect floating roof sample hatch cover recoil reel and rope.
N/A

2.9.68 For Nozzles Extended Into the Tank

320 C.2.11.3.a Inspect shell nozzles for thinning and pitting.
Corrosion Damaged

321 C.2.11.3.b Inspect hot tap nozzles for trimming of holes.
N/A

322 C.2.11.3.c Identify type of shell nozzles.
See Report

323 C.2.11.3.d Identify and describe internal piping, including elbow up and elbow down types.
See Report

2.9.69 Diffusers and Air Rolling Systems

331 C.2.11.4.a Inspect pipe support pads welded to tank bottom.
none present

332 C.2.11.4.b Inspect to see that pipe is free to move along support without strain or tearing action on bottom plate.
none present

333 C.2.11.4.c Inspect nozzle valves for packing leaks and damaged flange faces.
none present

334 C.2.11.4.d Inspect heater stream nozzle flanges and valves for wire cutting.
N/A

335 C.2.11.4.e Report which nozzles have thermal pressure relief bosses and valves.
none present

336 C.2.11.4.f In internal elbow-down fill line nozzles, inspect the wear plate on the tank bottom.
none present

337 C.2.11.4.g On elbow-up fill lines in floating roof tanks, check that opening is directed against underside of roof, not against vapor space. Inspect impact are for erosion.
N/A
3-in swing line removed from tank 395. (present in tanks 396 and 397. Both these tanks had a chain leading to the roof manway for raising the upturned elbow.) see photos

C.2.11.6.a Inspect flexible joint for cracks and leaks.

C.2.11.6.b Scribe the flexible joint across the two moving faces and raise end of swing line to check the joint's freedom of movement, indicated by separation of scribe marks. N/A

C.2.11.6.c Check that flexible joints over six inches are supported. N/A

C.2.11.6.d Inspect the swing pipe for deep pitting and weld corrosion. N/A

C.2.11.6.e Loosen the vent plugs in the pontoons and listen for a vacuum. Lack of a vacuum indicates a leaking pontoon. N/A

C.2.11.6.f Check the results of air test on pontoons during repairs. N/A

C.2.11.6.g Inspect the pontoons for pitting. N/A

C.2.11.6.h Inspect the pull-down cable connections to the swing N/A

C.2.11.6.i Inspect the condition of the bottom-mounted support, fixed roof limiting bumper, or shell mounted limiting bumper for wood condition, weld and bolt corrosion, and seal welding to bottom or shell. N/A

C.2.11.6.j Inspect safety hold-down chain for corrosion and weak links. N/A

C.2.11.6.k Check that there is a welded reinforcing pad where the chain connects to the bottom. N/A

C.2.11.6.l If the floating swing in a floating or internal floating roof tank does not have a limiting device preventing the swing from exceeding 60 degrees, measure and calculate the maximum angle possible with the roof on overflow. Max. angle on overflow (If the c N/A

C.2.11.6.m Inspect pull down cable for fraying. N/A

C.2.11.6.n Inspect for three cable clamps where cable attaches to end of swing line (single-reveved) or to roof assembly (double-reved). Inspect sheaves for freedom of movement. N/A

C.2.11.6.o Inspect winch operation and check the height indicator for legibility and accuracy. N/A

C.2.11.6.p Inspect bottom-mounted sheave assembly at end of pontoon for freedom of rotation of sheave. N/A

C.2.11.6.q Inspect shell-mounted lower sheave assembly for freedom of rotation of sheave, corrosion thinning, and pitting of sheave housing. N/A

C.2.11.6.r Inspect upper sheave assembly for freedom of movement of sheave. N/A

C.2.11.6.s Inspect the cable counterbalance assembly for corrosion and freedom of operation. N/A

2.9.982 Manway Heater Racks

C.2.11.7.a Inspect the manway heater racks for broken welds and bending of the sliding rails. N/A

C.2.11.7.b Measure and record the length of the heater and length of the track. N/A

2.9.983 Mixer Wear Plates and Deflector Stands

C.2.11.8.a Inspect bottom and shell plates and deflector stands. N/A

C.2.11.8.b Inspect for erosion and corrosion on the wear plates. Inspect for rigidity, structural soundness, corrosion, and erosion of deck plates and reinforcing pads that are seal welded to the bottom under the deflector stand legs. N/A

C.2.11.8.c Measure for propeller clearance between the bottom of deflector stand and roof when the roof is on low legs. N/A
B. FOUNDATION
PORTIONS OF BOTTOM EXTENSION COVERED BY SOIL

B. FOUNDATION
RAINWATER IN CONTACT WITH BOTTOM PLATES

B. FOUNDATION
MECHANICAL DENT IN LOWER SHELL

D. ROOF
DAMAGED ROOF

D. ROOF
TWISTED RAFTERS

D. ROOF
COATING FAILURE AND CORROSION ALONG CONE ROOF
D. ROOF
CORROSION ALONG UPPER ANGLE

D. ROOF
CORROSION ALONG ROOF LAP WELDS

E. SHELL
CREASE IN SHELL PLATES

E. SHELL
CREASES IN SHELL

F. BOTTOM
THROUGH-HOLE SOIL-SIDE CORROSION ALONG THE BOTTOM PLATES

F. BOTTOM
POSSIBLE INDICATIONS OF MIC (MICROBIOLOGICALLY INDUCED CORROSION)
F. BOTTOM
WIDESPREAD MFL INDICATIONS OF SOIL-SIDE CORROSION ON BOTTOM PLATES

F. BOTTOM
WATER AND DIRT PREVENTED ACCURATE UT PROVE-UP OF MFL INDICATIONS

F. BOTTOM
WIDESPREAD MFL INDICATIONS OF SOIL-SIDE CORROSION
C. APPURTENANCES
D. ROOF

DAMAGED ROOF
WATER AND DIRT PREVENTED ACCURATE UT PROOF-UP OF MFL INDICATIONS
POSSIBLE INDICATIONS OF MIC (MICROBIOLOGICALLY INDUCED CORROSION)